题目内容

(2012•海口模拟)△ABC中,若∠A、∠B、∠C所对的边a,b,c均成等差数列,∠B=
π
3
,△ABC的面积为4
3
,那么b=
4
4
分析:由a,b,c成等差数列,可得2b=a+c,平方得a2+c2=4b2-2ac,再由△ABC的面积为4
3
,且∠B=
π
3
,求出ac=16,代入余弦定理cosB=
a2+2-2
2ac
求出b的值.
解答:解:∵a,b,c成等差数列,∴2b=a+c,平方得a2+c2=4b2-2ac.
又△ABC的面积为4
3
,且∠B=
π
3
,∴4
3
=
1
2
 •ac•
3
2
,∴ac=16.
∴a2+c2=4b2-32.由余弦定理cosB=
a2+2-2
2ac
=
4b2-32-b2
32
=
1
2
,解得 b=4,
故答案为 4.
点评:解三角形是高考的重要组成部分,不在客观题考查,就在解答题中出现,但一般难度不大.解三角形所涉及的知识点要掌握,如正弦定理、余弦定理、三角形的面积公式等,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网