题目内容
已知函数的最大值为2.(1)求函数f(x)在[0,π]上的单调递减区间;
(2)△ABC中,,角A,B,C所对的边分别是a,b,c,且C=60°,c=3,求△ABC的面积.
【答案】分析:(1)将f(x)解析式利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域表示出f(x)的最大值,由已知最大值为2列出关于m的方程,求出方程的解得到m的值,进而确定出f(x)的解析式,由正弦函数的递减区间为[2kπ+,2kπ+](k∈Z),列出关于x的不等式,求出不等式的解集即可得到f(x)在[0,π]上的单调递减区间;
(2)由(1)确定的f(x)解析式化简f(A-)+f(B-)=4sinAsinB,再利用正弦定理化简,得出a+b=ab①,利用余弦定理得到(a+b)2-3ab-9=0②,将①代入②求出ab的值,再由sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.
解答:解:(1)f(x)=msinx+cosx=sin(x+θ)(其中sinθ=,cosθ=),
∴f(x)的最大值为,
∴=2,
又m>0,∴m=,
∴f(x)=2sin(x+),
令2kπ+≤x+≤2kπ+(k∈Z),解得:2kπ+≤x≤2kπ+(k∈Z),
则f(x)在[0,π]上的单调递减区间为[,π];
(2)设△ABC的外接圆半径为R,由题意C=60°,c=3,得====2,
化简f(A-)+f(B-)=4sinAsinB,得sinA+sinB=2sinAsinB,
由正弦定理得:+=2×,即a+b=ab①,
由余弦定理得:a2+b2-ab=9,即(a+b)2-3ab-9=0②,
将①式代入②,得2(ab)2-3ab-9=0,
解得:ab=3或ab=-(舍去),
则S△ABC=absinC=.
点评:此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,以及正弦函数的单调性,熟练掌握定理及公式是解本题的关键.
(2)由(1)确定的f(x)解析式化简f(A-)+f(B-)=4sinAsinB,再利用正弦定理化简,得出a+b=ab①,利用余弦定理得到(a+b)2-3ab-9=0②,将①代入②求出ab的值,再由sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.
解答:解:(1)f(x)=msinx+cosx=sin(x+θ)(其中sinθ=,cosθ=),
∴f(x)的最大值为,
∴=2,
又m>0,∴m=,
∴f(x)=2sin(x+),
令2kπ+≤x+≤2kπ+(k∈Z),解得:2kπ+≤x≤2kπ+(k∈Z),
则f(x)在[0,π]上的单调递减区间为[,π];
(2)设△ABC的外接圆半径为R,由题意C=60°,c=3,得====2,
化简f(A-)+f(B-)=4sinAsinB,得sinA+sinB=2sinAsinB,
由正弦定理得:+=2×,即a+b=ab①,
由余弦定理得:a2+b2-ab=9,即(a+b)2-3ab-9=0②,
将①式代入②,得2(ab)2-3ab-9=0,
解得:ab=3或ab=-(舍去),
则S△ABC=absinC=.
点评:此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,以及正弦函数的单调性,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关题目