题目内容
14.设f(x)=$\frac{1}{2}$x2-2x,g(x)=logax(a>0,a≠1),若h(x)=f(x)+g(x)(0,+∞)上增函数,且h′(x)存在零点.(1)求a的值;
(2)设A(x1,y1),B(x2,x2)(x1<x2)为y=g(x)的图象上的两点,且g′(x0)=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$,求证:x0∈(x1,x2)
分析 (1)化简h(x)=$\frac{1}{2}$x2-2x+logax,求导h′(x)=$\frac{(lna{)x}^{2}-2(lna)x+1}{xlna}$,从而可得△=4ln2a-4lna=0,从而解得;
(2)求导g′(x0)=$\frac{1}{{x}_{0}}$=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$,从而可得x0=$\frac{{x}_{2}-{x}_{1}}{ln{x}_{2}-ln{x}_{1}}$,化简$\frac{{x}_{2}-{x}_{1}}{ln{x}_{2}-ln{x}_{1}}$-x1=$\frac{{x}_{2}-{x}_{1}-{x}_{1}ln{x}_{2}+{x}_{1}ln{x}_{1}}{ln{x}_{2}-ln{x}_{1}}$,令r(x)=xlnx-xlnx2+x2-x,从而求导r′(x)=lnx+1-lnx2-1=lnx-lnx2,从而可证x0-x1>0,从而证明.
解答 解:(1)∵h(x)=f(x)+g(x)=$\frac{1}{2}$x2-2x+logax,
∴h′(x)=x-2+$\frac{1}{xlna}$=$\frac{(lna{)x}^{2}-2(lna)x+1}{xlna}$,
∵h(x)在(0,+∞)上是增函数,且h′(x)存在零点,
∴△=4ln2a-4lna=0,
解得,lna=1或lna=0;
故a=e或a=1(舍去);
故a=e;
(2)证明:∵g′(x0)=$\frac{1}{{x}_{0}}$=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$,
∴x0=$\frac{{x}_{2}-{x}_{1}}{ln{x}_{2}-ln{x}_{1}}$,
$\frac{{x}_{2}-{x}_{1}}{ln{x}_{2}-ln{x}_{1}}$-x1=$\frac{{x}_{2}-{x}_{1}-{x}_{1}ln{x}_{2}+{x}_{1}ln{x}_{1}}{ln{x}_{2}-ln{x}_{1}}$,
令r(x)=xlnx-xlnx2+x2-x,
r′(x)=lnx+1-lnx2-1=lnx-lnx2,
在(0,x2]上,r′(x)<0;
所以r(x)在(0,x2]上是减函数,
当x1<x2时,r(x1)>r(x2)=0,
即x2-x1-x1lnx2+x1lnx1>0,
故$\frac{{x}_{2}-{x}_{1}}{ln{x}_{2}-ln{x}_{1}}$-x1>0,
即x0-x1>0,同理可证,x2-x0>0,
故x0∈(x1,x2).
点评 本题考查了导数的综合综合应用及不等式的证明.
A. | {2} | B. | {1} | C. | [-2,0] | D. | {-2,-1,0} |