题目内容
某港口水的深度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下面是某日水深的数据:t/时 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/米 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
经长期观察,y=f(t)的曲线可以近似地看成函数y=Asinωt+b的图象.
(1)试根据以上数据,求出函数y=f(t)的近似表达式;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可),某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需的时间)?
解析:(1)由已知数据,易知函数y=f(t)的周期T=,振幅A=3,b=10,
∴y=3sin+10.
(2)由题意,该船进出港时,水深应不小于5+6.5=11.5(米),
∴3sin+10≥11.5,
∴sin≥,解得2kπ+≤t≤2kπ+(k∈Z),12k+1≤t≤12k+5(k∈Z),在同一天取k=0或1,
∴1≤t≤5或13≤t≤17,
∴该船最早能在凌晨1时进港,下午17时出港,在港口内最多停留16个小时.
练习册系列答案
相关题目
设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24,下表是该港口某一天从0时至24时记录的时间t与水深y的关系:
经观察,y=f(t)可以近似看成y=K+Asin(ωx+φ)的图象,下面的函数中最能近似地表示表中数据对应关系的函数是( )
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 12 | 15.1 | 12.1 | 9.1 | 11.9 | 14.9 | 11.9 | 8.9 | 12.1 |
A、y=12+3sin
| ||||
B、y=12+3sin(
| ||||
C、y=12+3sin
| ||||
D、y=12+3sin(
|