ÌâÄ¿ÄÚÈÝ
¹ýµãP£¨1£¬0£©×÷ÇúÏßC£ºy=xk£¨x¡Ê£¨0£¬+¡Þ£©£¬k¡ÊN*£¬k£¾1£©µÄÇÐÏߣ¬ÇеãΪM1£¬ÉèM1ÔÚxÖáÉϵÄͶӰÊǵãP1£»ÓÖ¹ýµãP1×÷ÇúÏßCµÄÇÐÏߣ¬ÇеãΪM2£¬ÉèM2ÔÚxÖáÉϵÄͶӰÊǵãP2£»¡£»ÒÀ´ËÏÂÈ¥£¬µÃµ½Ò»ÏµÁеãM1£¬M2£¬¡Mn£¬¡£»ÉèËüÃǵĺá×ø±êa1£¬a2£¬¡£¬
an¡¹¹³ÉÊýÁÐΪ{an}£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÇóÖ¤£ºan¡Ý1+
£»
£¨¢ó£©µ±k=2ʱ£¬Áîbn=
£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍSn£®
an¡¹¹³ÉÊýÁÐΪ{an}£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÇóÖ¤£ºan¡Ý1+
n |
k-1 |
£¨¢ó£©µ±k=2ʱ£¬Áîbn=
n |
an |
£¨¢ñ£©¶Ôy=xkÇóµ¼Êý£¬
µÃy¡ä=kxk-1£¬
µãÊÇMn£¨an£¬ank£©µÄÇÐÏß·½³ÌÊÇy-ank=kank-1£¨x-an£©£®¡£¨2·Ö£©
µ±n=1ʱ£¬ÇÐÏß¹ýµãP£¨1£¬0£©£¬
¼´0-a1k=ka1k-1£¨1-a1£©£¬
µÃa1=
£»
µ±n£¾1ʱ£¬ÇÐÏß¹ýµãPn-1£¨an-1£¬0£©£¬
¼´0-ank=kank-1£¨an-1-an£©£¬
µÃ
=
£®
ËùÒÔÊýÁÐ{an}ÊÇÊ×Ïîa1=
£¬¹«±ÈΪ
µÄµÈ±ÈÊýÁУ¬
ËùÒÔÊýÁÐ{an}µÄͨÏʽΪan=(
)n£¬n¡ÊN*£®¡£¨4·Ö£©
£¨ II£©Ó¦ÓöþÏîʽ¶¨Àí£¬µÃan=(
)n=(1+
)n=
+
+
(
)2+¡+
(
)n¡Ý1+
£®¡£¨8·Ö£©
£¨ III£©µ±k=2ʱ£¬an=2n£¬
ÊýÁÐ{bn}µÄÇ°nÏîºÍSn=
+
+
+¡+
£¬
ͬ³ËÒÔ
£¬µÃ
Sn=
+
+
+¡+
£¬
Á½Ê½Ïà¼õ£¬¡£¨10·Ö£©
µÃ
Sn=
+
+
+¡+
-
=
-
=1-
-
£¬
ËùÒÔSn=2-
£®¡£¨12·Ö£©
µÃy¡ä=kxk-1£¬
µãÊÇMn£¨an£¬ank£©µÄÇÐÏß·½³ÌÊÇy-ank=kank-1£¨x-an£©£®¡£¨2·Ö£©
µ±n=1ʱ£¬ÇÐÏß¹ýµãP£¨1£¬0£©£¬
¼´0-a1k=ka1k-1£¨1-a1£©£¬
µÃa1=
k |
k-1 |
µ±n£¾1ʱ£¬ÇÐÏß¹ýµãPn-1£¨an-1£¬0£©£¬
¼´0-ank=kank-1£¨an-1-an£©£¬
µÃ
an |
an-1 |
k |
k-1 |
ËùÒÔÊýÁÐ{an}ÊÇÊ×Ïîa1=
k |
k-1 |
k |
k-1 |
ËùÒÔÊýÁÐ{an}µÄͨÏʽΪan=(
k |
k-1 |
£¨ II£©Ó¦ÓöþÏîʽ¶¨Àí£¬µÃan=(
k |
k-1 |
1 |
k-1 |
C | 0n |
C | 1n |
1 |
k-1 |
C | 2n |
1 |
k-1 |
C | nn |
1 |
k-1 |
n |
k-1 |
£¨ III£©µ±k=2ʱ£¬an=2n£¬
ÊýÁÐ{bn}µÄÇ°nÏîºÍSn=
1 |
2 |
2 |
22 |
3 |
23 |
n |
2n |
ͬ³ËÒÔ
1 |
2 |
1 |
2 |
1 |
22 |
2 |
23 |
3 |
24 |
n |
2n+1 |
Á½Ê½Ïà¼õ£¬¡£¨10·Ö£©
µÃ
1 |
2 |
1 |
2 |
1 |
22 |
1 |
23 |
1 |
2n |
n |
2n+1 |
| ||||
1-
|
n |
2n+1 |
1 |
2n |
n |
2n+1 |
ËùÒÔSn=2-
n+2 |
2n |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿