题目内容

已知{an}是等比数列,对?n∈N*,an>0恒成立,且a1a3+2a2a5+a4a6=36,则a2+a5等于


  1. A.
    36
  2. B.
    ±6
  3. C.
    -6
  4. D.
    6
D
分析:根据等比中项的性质可知a1a3+2a2a5+a4a6=(a2+a52进而可得a2+a5
解答:∵?n∈N*,an>0
∴a1a3+2a2a5+a4a6=(a2+a52=36,
∴a2+a5=6.
故选D
点评:本题主要考查了等比数列的性质.即若 m、n、p、q∈N*,且m+n=p+q,则aman=apaq
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网