题目内容
【题目】将函数f(x)= sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移 个单位,得到函数y=g(x)的图象,则y=g(x)的一个递增区间是( )
A.
B.
C.
D.
【答案】A
【解析】解:f(x)= sinxcosx+sin2x= sin2x﹣ cos2x+ =sin(2x﹣ )+ , 图象上各点的纵坐标不变,横坐标变为原来的2倍,可得对应的函数解析式为y=sin(x﹣ )+ ,
再沿x轴向右平移 个单位,得到函数解析式为y=g(x)=sin(x﹣ ﹣ )+ =sin(x﹣ )+ ,
令x﹣ ∈[2kπ﹣ ,2kπ+ ],k∈Z,解得:x∈[﹣ +2kπ,kπ+ ],k∈Z,
取k=0,可得:x∈[﹣ , ].
故选:A.
【考点精析】关于本题考查的函数y=Asin(ωx+φ)的图象变换,需要了解图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能得出正确答案.
练习册系列答案
相关题目