题目内容

设函数f(x)=4lnx-(x-1)2
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若关于x的方程f(x)+x2-4x-a=0在区间[1,e]内恰有两个相异的实根,求实数a的取值范围.
(I)∵函数f(x)=4lnx-(x-1)2
∴f′(x)=
4
x
-2x+2=
-2x2+2x+4
x
=
-2(x-2)(x+1)
x
(x>0).
令f′(x)>0,解得x∈(0,2)
故函数f(x)的单调递增区间为(0,2)
(II)关于x的方程f(x)+x2-4x-a=0
可化为4lnx-(x-1)2+x2-4x-a=4lnx-2x-1-a=0
令g(x)=4lnx-2x-1-a
则g′(x)=
4
x
-2
令g′(x)=0,则x=2,
则当0<x<2时,g′(x)>0,g(x)为增函数
当x>2时,g′(x)<0,g(x)为减函数
故当方程f(x)+x2-4x-a=0在区间[1,e]内恰有两个相异的实根时
g(1)=-3-a≤0
g(2)=4ln2-5-a>0
g(e)=3-2e-a≤0

解得3-2e≤a<4ln2-5
故实数a的取值范围为[3-2e,4ln2-5)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网