题目内容
点A、B分别是以双曲线![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_ST/2.png)
(I)求椭圆C的方程;
(II)求点P的坐标;
(III)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到M的距离d的最小值.
【答案】分析:(I)求出双曲线![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/0.png)
的焦点、顶点,得出椭圆的a,c,b即可求出椭圆标准方程.
(Ⅱ)点P的坐标为(x,y),由已知得
解方程组可得点P的坐标
(Ⅲ)设点M是(m,0)于是
,解出m=2,建立椭圆上的点到M的距离d的表达式,用函数知识求最值
解答:解(I)已知双曲线实半轴a1=4,虚半轴b1=2
,半焦距c1=
,
∴椭圆的长半轴a2=c1=6,椭圆的半焦距c2=a1=4,椭圆的短半轴b2=
,
∴所求的椭圆方程为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/8.png)
(II)由已知A(-6,0),F(4,0),
设点P的坐标为(x,y),则
,由已知得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/10.png)
则2x2+9x-18=0,解之得
,
由于y>0,所以只能取
,于是
,所以点P的坐标为
(9分)
(Ⅲ)直线
,设点M是(m,0),则点M到直线AP的距离是
,于是
,
又∵点M在椭圆的长轴上,即-6≤m≤6∴m=2
∴当m=2时,椭圆上的点到M(2,0)的距离![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/18.png)
又-6≤x≤6∴当
时,d取最小值![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/20.png)
点评:本题考查圆锥曲线的几何性质、标准方程、距离求解.考查函数知识、方程思想、计算能力.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/1.png)
(Ⅱ)点P的坐标为(x,y),由已知得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/2.png)
(Ⅲ)设点M是(m,0)于是
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/3.png)
解答:解(I)已知双曲线实半轴a1=4,虚半轴b1=2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/5.png)
∴椭圆的长半轴a2=c1=6,椭圆的半焦距c2=a1=4,椭圆的短半轴b2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/6.png)
∴所求的椭圆方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/8.png)
(II)由已知A(-6,0),F(4,0),
设点P的坐标为(x,y),则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/10.png)
则2x2+9x-18=0,解之得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/11.png)
由于y>0,所以只能取
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/14.png)
(Ⅲ)直线
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/17.png)
又∵点M在椭圆的长轴上,即-6≤m≤6∴m=2
∴当m=2时,椭圆上的点到M(2,0)的距离
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/18.png)
又-6≤x≤6∴当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225619767089392/SYS201311012256197670893025_DA/20.png)
点评:本题考查圆锥曲线的几何性质、标准方程、距离求解.考查函数知识、方程思想、计算能力.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目