题目内容
函数f(x)=x3+ax2-a2x+1,g(x)=ax2-2x+1,实数a≠0.
(Ⅰ)若a>0,求函数f(x)的单调区间;
(Ⅱ)当函数y=f(x)与y=g(x)的图象只有一个公共点且g(x)存在最小值时,记g(x)的最小值为h(a),求h(a)的值域;
(Ⅲ)若f(x)与g(x)在区间(a,a+2)内均为增函数,求a的取值范围.
答案:
练习册系列答案
相关题目
题目内容
函数f(x)=x3+ax2-a2x+1,g(x)=ax2-2x+1,实数a≠0.
(Ⅰ)若a>0,求函数f(x)的单调区间;
(Ⅱ)当函数y=f(x)与y=g(x)的图象只有一个公共点且g(x)存在最小值时,记g(x)的最小值为h(a),求h(a)的值域;
(Ⅲ)若f(x)与g(x)在区间(a,a+2)内均为增函数,求a的取值范围.