题目内容
某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
组别 | 分组 | 回答正确的人数 | 回答正确的人数占本组的概率 |
第1组 | [15,25) | 5 | 0.5 |
第2组 | [25,35) | 0.9 | |
第3组 | [35,45) | 27 | |
第4组 | [45,55) | 0.36 | |
第5组 | [55,65) | 3 |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
(1);(2)人,人,1人;(3).
试题分析:(1)由统计表可求得第1组的人数,再由频率分布直方图可得到第1组人数点总体人数的频率(等于对应矩形方块的高度矩形方块的宽度),从而就可得到总体的人数n;进而就可求得其余各组的人数,再由统计表就可计算出a,b,x,y的值;(2)分层抽样方法就是各层按照相同的比例抽样:其抽取的比例为:结合(1)结果就可得到各组所抽取的人数;(3)将从(2)中抽取的6人按组别用不同的字母表示,然后用树图方式列出从中抽取2人的所有可能情况,数出全部情况总数,最后从中数出第2组至少有1人的情况的种数,从而就可求得所求的概率.
试题解析:(1)第1组人数, 所以,
第2组人数,所以,
第3组人数,所以,
第4组人数,所以,
第5组人数,所以. 5分
(2)第2,3,4组回答正确的人的比为,所以第2,3,4组每组应各依次抽取人,人,1人. 8分
(3)记抽取的6人中,第2组的记为,第3组的记为,第4组的记为, 则从6名幸运者中任取2名的所有可能的情况有15种,他们是:
,,,,,,,,,,,,,,. 12分
其中第2组至少有1人的情况有9种,他们是: ,,,,,,,,.
故所求概率为. 14分
练习册系列答案
相关题目