题目内容
(08年山东卷文)设满足约束条件则的最大值为 .
【解析】本小题主要考查线性规划问题。作图(略)易知可行域为一个四角形,其四个顶点
分别为验证知在点时取得最大值11.
答案:11
(08年山东卷文)设函数则的值为( )
A. B. C. D.
(08年山东卷文)(本小题满分12分)
如图,在四棱锥中,平面平面,,是等边三角形,已知,.
(Ⅰ)设是上的一点,证明:平面平面;
(Ⅱ)求四棱锥的体积.
设函数,已知和为的极值点.
(Ⅰ)求和的值;
(Ⅱ)讨论的单调性;
(Ⅲ)设,试比较与的大小.
(08年山东卷文)(本小题满分14分)
已知曲线所围成的封闭图形的面积为,曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是过椭圆中心的任意弦,是线段的垂直平分线.是上异于椭圆中心的点.
(1)若(为坐标原点),当点在椭圆上运动时,求点的轨迹方程;
(2)若是与椭圆的交点,求的面积的最小值.