题目内容

(08年山东卷文)(本小题满分12分)

设函数,已知的极值点.

(Ⅰ)求的值;

(Ⅱ)讨论的单调性;

(Ⅲ)设,试比较的大小.

解析】(Ⅰ)因为

的极值点,所以

因此

解方程组得

(Ⅱ)因为

所以

,解得

因为当时,

时,

所以上是单调递增的;

上是单调递减的.

(Ⅲ)由(Ⅰ)可知

,得

因为时,

所以上单调递减.

时,

因为时,

所以上单调递增.

时,

所以对任意,恒有,又

因此

故对任意,恒有

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网