题目内容

设α,β是方程4x2-4mx+m+2=0,(x∈R)的两个实根,当m为何值时,α22有最小值?并求出这个最小值.
分析:由已知中α,β是方程4x2-4mx+m+2=0,(x∈R)的两个实根,则首先应判断△≥0,即方程有两个实数根,然后根据韦达定理(一元二次方程根与系数)的关系,给出α22的表达式,然后根据二次函数的性质,即可得到出m为何值时,α22有最小值,进而得到这个最小值.
解答:解:若α,β是方程4x2-4mx+m+2=0,(x∈R)的两个实根
则△=16m2-16(m+2)≥0,即m≤-1,或m≥2
则α+β=m,α×β=
m+2
4

则α22=(α+β)2-2αβ=m2-2×
m+2
4
=m2-
1
2
m-1=(m-
1
4
2-
17
16

∴当m=-1时,α22有最小值,最小值是
1
2
点评:本题考查的知识点是一元二次方程根的颁布与系数的关系,一次函数的性质,其中易忽略,方程有两个根时△≥0的限制,直接利用韦达定理和二次函数的性质求解,而错解为当x=
1
4
时,最小值为-
17
16
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网