题目内容
【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出5人,进行体育锻炼体会交流,再从这5人中选出2人作重点发言,求作重点发言的2人中,至少1人是女生的概率.
参考公式:,其中.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)见解析(2)
【解析】
(1)根据题意填写列联表,计算观测值,对照临界值得出结论;
(2)根据题意,得出抽取男女生人数,列出所有的基本事件,找出满足条件的基本事件,利用古典概型概率公式求得结果.
(1)
锻炼不达标 | 锻炼达标 | 合计 | |
男 | 60 | 30 | 90 |
女 | 90 | 20 | 110 |
合计 | 150 | 50 | 200 |
由列联表中数据,
计算得到的观测值为 .
所以在犯错误的概率不超过0.025的前提下能判断“锻炼达标”与性别有关.
(2)“锻炼达标”的学生有50人,男、女生人数比为,
故用分层抽样方法从中抽取5人,
有3人是男生,记为,有2人是女生,记为,
则从这5人中选出2人,
选法有共10种,
设事件表示“作重点发言的2人中,至少有1人是女生”,
则事件发生的情况为,共7种.
所以所求概率为.
练习册系列答案
相关题目