题目内容
与直线平行的抛物线的切线方程是
A.2xy+3=0 | B.2xy3=0 |
C.2xy+1=0 | D.2xy1=0 |
D
根据导数的几何意义求出函数f(x)在x处的导数等于切线的斜率,建立等式,求出x的值,从而求出切点坐标,最后将切线方程写出一般式即可.
解:y’=2x
2x=2即x=1
∴切点坐标为(1,1)
∴与直线2x-y+4=0的平行的抛物线y=x2的切线方程是 2x-y-1=0
故答案为D
解:y’=2x
2x=2即x=1
∴切点坐标为(1,1)
∴与直线2x-y+4=0的平行的抛物线y=x2的切线方程是 2x-y-1=0
故答案为D
练习册系列答案
相关题目