题目内容

已知双曲线与抛物线有一个公共的焦点,且双曲线上的点到坐标原点的最短距离为1,则该双曲线的标准方程是___________。

 

【答案】

【解析】

试题分析:利用抛物线的焦点坐标确定,双曲线中c的值,利用双曲线上的点到坐标原点的最短距离为1,确定a的值,从而可求双曲线的标准方程。解:抛物线y2=8x得出其焦点坐标(2,0),故双曲线的c=2,

∵双曲线上的点到坐标原点的最短距离为1,∴a=1,∴b2=c2-a2=3,∴双曲线的标准方程是故答案为:

考点:抛物线的标准方程

点评:本题考查抛物线的标准方程与性质,考查双曲线的标准方程,确定几何量是关键.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网