题目内容

若(x+m)2n+1与(mx+1)2n(n∈N*,m≠0)的展开式中含xn的系数相等,则实数m的取值范围是(  )
A.(
1
2
2
3
]
B.[
2
3
,1)
C.(-∞,0)D.(0,+∞)
(x+m)2n+1的展开式的通项公式为Tr+1=C2n+1rmrx2n+1-r
由2n+1-r=n得n=r-1得r=n+1
∴展开式中当xn的项的系数为C2n+1n+1mn+1
又(mx+1)2n展开式的通项公式Tk+1=C2nk(mx)2n-k=m2n-kC2nkx2n-k
由2n-k=n得n=k
∴这一展开式中含xn的项的系数为mnC2nn
∴由①,②得C2n+1n+1mn+1=mnC2nn
mC2n+1n=C2nn
m
(2n+1)!
(n+1)!n!
=
(2n)!
n!n!

m=
n+1
2n+1
=
1
2
+
1
2(2n+1)

∴m>
1
2

又m
1
2
+
1
2×3

m≤
2
3

于是由③,④得
1
2
<m≤
2
3

故选项为A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网