题目内容

曲线C1,C2都是以原点O为对称中心、离心率相等的椭圆.点M的坐标是(0,1),线段MN是C1的短轴,是C2的长轴.直线l:y=m(0<m<1)与C1交于A,D两点(A在D的左侧),与C2交于B,C两点(B在C的左侧).
(Ⅰ)当m=
3
2
|AC|=
5
4
时,求椭圆C1,C2的方程;
(Ⅱ)若OBAN,求离心率e的取值范围.
(Ⅰ)设C1的方程为
x2
a2
+y2=1
,C2的方程为
x2
b2
+y2=1
,其中a>1,0<b<1…(2分)
∵C1,C2的离心率相同,所以
a2-1
a2
=1-b2

所以ab=1,….…(3分)
∴C2的方程为a2x2+y2=1.
当m=
3
2
时,A(-
a
2
3
2
)
,C(
1
2a
3
2
)
….(5分)
又∵|AC|=
5
4
,所以,
1
2a
+
a
2
=
5
4
,解得a=2或a=
1
2
(舍),….…..(6分)
∴C1,C2的方程分别为
x2
4
+y2=1
,4x2+y2=1.….(7分)
(Ⅱ)A(-a
1-m2
,m),B(-
1
a
1-m2
,m). …(9分)
∵OBAN,∴kOB=kAN
m
-
1
a
1-m2
=
m+1
-a
1-m2

m=
1
a2-1
. ….(11分)
e2=
a2-1
a2

a2=
1
1-e2

m=
1-e2
e2
. …(12分)
∵0<m<1,
0<
1-e2
e2
<1

2
2
<e<1
…(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网