题目内容

已知x>0,由不等式x+
1
x
>2
x2+
2
x
>3
x3+
3
x
>4
…可以推广为(  )
A、xn+
n
x
>n
B、xn+
n
x
>n+1
C、xn+
n+1
x
>n+1
D、xn+
n+1
x
>n
分析:认真观察各式,不等式左边是两项的和,第一项是:x,x2,x3,…右边的数是:2,3,4…,利用此规律观察所给不等式,都是写成xn+
n
x
>n+1
的形式,从而即可求解.
解答:解:认真观察各式,
不等式左边是两项的和,第一项是:x,x2,x3,…
右边的数是:2,3,4…,利用此规律观察所给不等式,
都是写成xn+
n
x
>n+1
的形式,从而此归纳出一般性结论是:xn+
n
x
>n+1

故选B.
点评:本题考查了归纳推理、分析能力,认真观察各式,根据所给式子的结构特点的变化情况总结规律是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网