题目内容

(2012•眉山二模)(1)已知△ABC中,角A,B,C的对边分别是a,b,c,
AB
AC
=3,a=2
5
,b+c=6,求cosA.
(2)设f(x)=-2cos2
π
8
x+sin(
π
4
x-
π
6
)+1,当x∈[-
2
3
,0]时,求y=f(x)的最大值.
分析:(1)利用向量的数量积公式,结合余弦定理,可求cosA的值;
(2)先利用二倍角公式、辅助角公式化简函数,再根据角的范围,利用正弦函数的单调性,即可求得函数的最大值.
解答:解:(1)∵
AB
AC
=3,∴bccosA=3                              
又a2=b2+c2-2bccosA=(b+c)2-2bc-2bccosA,a=2
5
,b+c=6
∴20=36-2bc-6∴
∴bc=5
∴cosA=
3
5

(2)f(x)=-2cos2
π
8
x
+sin(
π
4
x-
π
6
)+1=
3
2
sin
π
4
x-
3
2
cos
π
4
x
=
3
sin(
π
4
x-
π
3

∵x∈[-
2
3
,0],
π
4
x-
π
3
∈[-
π
2
,-
π
3
]

π
4
x-
π
3
=-
π
3
,即x=0时,函数的最大值是-
3
2
点评:本题考查数量积公式、余弦定理,考查三角函数的性质,解题的关键是正确化简函数,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网