题目内容
【题目】已知是定义域为的奇函数,满足,若,则________
【答案】2
【解析】
根据函数奇偶性和对称性的关系求出函数的周期是4,结合函数的周期性和奇偶性进行转化求解即可.
∵f(x)是奇函数,且f(1-x)=f(1+x),
∴f(1-x)=f(1+x)=-f(x-1),f(0)=0,
则f(x+2)=-f(x),则f(x+4)=-f(x+2)=f(x),
即函数f(x)是周期为4的周期函数,
∵f(1)=2,
∴f(2)=f(0)=0,f(3)=f(1-2)=f(-1)=-f(1)=-2,
f(4)=f(0)=0,
则f(1)+f(2)+f(3)+f(4)=2+0-2+0=0,
则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(45)+f(46)
=f(1)+f(2)=2+0=2,
即答案为2.
【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量(单位:千万件)的影响,统计了近年投入的年研发费用与年销售量的数据,得到散点图如图所示.
(1)利用散点图判断和(其中均为大于的常数)哪一个更适合作为年销售量和年研发费用的回归方程类型(只要给出判断即可,不必说明理由)
(2)对数据作出如下处理,令,得到相关统计量的值如下表:根据第(1)问的判断结果及表中数据,求关于的回归方程;
| |||
15 | 15 | 28.25 | 56.5 |
(3)已知企业年利润(单位:千万元)与的关系为(其中),根据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,
【题目】2019年某地初中毕业升学体育考试规定:考生必须参加长跑、掷实心球、1分钟跳绳三项测试,三项测试各项20分,满分60分.某学校在初三上学期开始时,为掌握全年级学生1分钟跳绳情况,按照男女比例利用分层抽样抽取了100名学生进行测试,其中女生54人,得到下面的频率分布直方图,计分规则如表1:
表1
每分钟跳绳个数 | ||||
得分 | 17 | 18 | 19 | 20 |
(1)规定:学生1分钟跳绳得分20分为优秀,在抽取的100名学生中,男生跳绳个数大于等于185个的有28人,根据已知条件完成表2,并根据这100名学生测试成绩,能否有99%的把握认为学生1分钟跳绳成绩优秀与性别有关?
表2
跳绳个数 | 合计 | ||
男生 | 28 | ||
女生 | 54 | ||
合计 | 100 |
附:参考公式:
临界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步.假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,全年级恰有2000名学生,所有学生的跳绳个数服从正态分布(用样本数据的平均值和方差估计总体的期望和方差,各组数据用中点值代替).
①估计正式测试时,1分钟跳182个以上的人数(结果四舍五入到整数);
②若在全年级所有学生中任意选取3人,正式测试时1分钟跳195个以上的人数为,求的分布列及期望.
附:若随机变量服从正态分布,则,,..