题目内容
已知向量
,
为单位向量,且
•
=
,点C是向量
,
的夹角内一点,|
|=4,
•
=
,若数列{an}满足
=
+a1
,则a6=( )
OA |
OB |
OA |
OB |
1 |
4 |
OA |
OB |
OC |
OC |
OB |
7 |
2 |
OC |
3an+1(an+1) |
2an |
OB |
OA |
分析:根据
•
=
列出一个关系式①,再根据
•
=
,可以求得
与
夹角的余弦值,同理可以求出
与
夹角的余弦值,再根据角之间的关系,可以求得
与
的夹角的余弦值,从而利用
•
列出一个等式②,联立①②即可得a1和递推关系,根据递推关系即可求得.
OB |
OC |
7 |
2 |
OA |
OB |
1 |
4 |
OA |
OB |
OB |
OC |
OA |
OC |
OA |
OC |
解答:解:∵
=
+a1
,
∴
•
=
•
+a1
•
∵向量
,
为单位向量,且
•
=
,
•
=
,
∴
=
+
a1 ①
设
与
的夹角为θ,
与
的夹角为α,
与
的夹角为β,
•
=|
||
|cosθ=
,∴cosθ=
,∵θ∈[0,π],∴sinθ=
,
•
=|
||
|cosα=
,∴cosα=
,∵α∈[0,π],∴sinα=
,
∴cosβ=cos(θ-α)=cosθcosα+sinθsinα=
×
+
×
=
∴
•
=|
||
|cosβ=1×4×
=
•
=
•
+a1
•
,
即
=
×
+a1 ②
由①②可解得,a1=2,
=3,
由
=3可得an+1=
,
∴a2=
=
,a3=
=
,a4=
=
,a5=
=
,a6=
=
,
故选A.
OC |
3an+1(an+1) |
2an |
OB |
OA |
∴
OB |
OC |
3an+1(an+1) |
2an |
OB |
OB |
OA |
OB |
∵向量
OA |
OB |
OA |
OB |
1 |
4 |
OC |
OB |
7 |
2 |
∴
7 |
2 |
3an+1(an+1) |
2an |
1 |
4 |
设
OA |
OB |
OB |
OC |
OA |
OC |
OA |
OB |
OA |
OB |
1 |
4 |
1 |
4 |
| ||
4 |
OB |
OC |
OB |
OC |
7 |
2 |
7 |
8 |
| ||
8 |
∴cosβ=cos(θ-α)=cosθcosα+sinθsinα=
1 |
4 |
7 |
8 |
| ||
4 |
| ||
8 |
11 |
16 |
∴
OA |
OC |
OA |
OC |
11 |
16 |
11 |
4 |
OA |
OC |
3an+1(an+1) |
2an |
OA |
OB |
OA |
OA |
即
11 |
4 |
3an+1(an+1) |
2an |
1 |
4 |
由①②可解得,a1=2,
3an+1(an+1) |
2an |
由
3an+1(an+1) |
2an |
2an |
an+1 |
∴a2=
2a1 |
a1+1 |
4 |
3 |
2a2 |
a2+1 |
8 |
7 |
2a3 |
a3+1 |
16 |
15 |
2a4 |
a4+1 |
32 |
31 |
2a5 |
a5+1 |
64 |
63 |
故选A.
点评:本题考查了平面向量的数量积、三角函数求值、数列的递推公式,综合性非常强,对学生的要求很高,属于难题.
练习册系列答案
相关题目