题目内容

10、Sn是数列{an}的前n项和,则“数列{Sn}为等差数列”是“数列{an}为常数列”的(  )条件
分析:先看如果数列{Sn}为等差数列成立能不能得出“数列{an}为常数列”成立,如果成立则为必要条件;同理看如果“数列{an}为常数列”成立能不能退出“数列{Sn}为等差数列”,如果成立则“数列{Sn}为等差数列”是“数列{an}为常数列”充分条件.
解答:解:如果数列{Sn}为等差数列,
an+1=Sn+1-Sn=p,则p为常数,故数列{an}为常数列
∴“数列{Sn}为等差数列”是“数列{an}为常数列”的必要条件
如果a(n)是常数列,当限制n的取值范围时,s(n)就不是等差数列.
∴“数列{Sn}为等差数列”是“数列{an}为常数列”的必要条件不充分条件.
故选B
点评:本题主要等差数列的性质和充分必要条件的判定.在判定充分必要条件时一定要注意条件的前后顺序.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网