题目内容
求证:tan2θ(1+cos2θ)=1-cos2θ.
证明:∵等式左边=tan2θ(1+cos2θ)
=
(1+2cos2θ-1)
=
•2cos2θ
=2sin2θ,
等式右边=1-cos2θ=1-(1-2sin2θ)=2sin2θ,
∴左边=右边,
故原式成立.
=
sin2θ |
cos2θ |
=
sin2θ |
cos2θ |
=2sin2θ,
等式右边=1-cos2θ=1-(1-2sin2θ)=2sin2θ,
∴左边=右边,
故原式成立.
练习册系列答案
相关题目