题目内容

已知
π
2
<α<π
sinα=
3
5

(1)求cos2α-sin(
π
2
+α)
的值;
(2)求tan2α的值.
分析:(1)由题意,α是个钝角,由同角三角函数的关系可以解得cosα=-
1-sin2α
=-
4
5
,由于cos2α-sin(
π
2
+α)
=2cos2α-cosα-1,将角α的余弦代入即可求得cos2α-sin(
π
2
+α)
的值
(2)由正切的二倍角公式知tan2α=
2tanα
1-tan2α
,故由(1)求出tanα的值,再代入求tan2α
解答:解:(1)∵
π
2
<α<π
sinα=
3
5

cosα=-
1-sin2α
=-
4
5
(2分)
cos2α-sin(
π
2
+α)=1-2sin2α-cosα
(5分)
=1-2×
9
25
-(-
4
5
)=
27
25
(6分)
(2)∵tanα=
sinα
cosα
=-
3
4
(7分)
tan2α=
2tanα
1-tan2α
=-
24
7
(10分)
点评:本题考查二倍角的正切,同角三角函数的基本关系以及诱导公式,解答此类题关键是熟练掌握公式且能利用公式灵活变形与求值,本题考查转化能力与运算能力
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网