题目内容

【题目】某种商品原来每件售价为25元,年销售量8万件.

(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?

(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

【答案】1)每件定价最多为元;(2)当该商品明年的销售量至少达到万件时,才可能使明年的销售收入不低于原收入与总收入之和,此时该商品的每件定价为元.

【解析】

(1)设出每件的定价,根据“销售的总收入不低于原收入”列不等式,解不等式求得定价的取值范围,由此求得定价的最大值.(2)利用题目所求“改革后的销售收入不低于原收入与总投入之和”列出不等式,将不等式分离常数,然后利用基本不等式求得的取值范围以及此时商品的每件定价.

解:(1)设每件定价为元,

依题意得

整理得

解得

所以要使销售的总收入不低于原收入,每件定价最多为40元.

(2)依题意知当时,不等式有解

等价于时,有解,

由于

当且仅当,即时等号成立,

所以

当该商品改革后销售量至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网