题目内容
已知O、A、B、C是不共线的四点,若存在一组正实数λ1﹑λ2﹑λ3,使λ1![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_ST/3.png)
A.都是锐角
B.至多有两个钝角
C.恰有两个钝角
D.至少有两个钝角
【答案】分析:根据λ1
+λ2
+λ3
=
,移向得λ1
+λ2
=-λ3
,两边同时点乘
,得λ1
•
+λ2![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/10.png)
=-λ3![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/12.png)
<0,在根据正实数λ1﹑λ2﹑λ3,和向量数量积的定义即可确定∠BOC、∠COA至少有一个为钝角,同理可证明∠AOB、∠BOC至少有一个为钝角,∠AOB、∠COA至少有一个为钝角,从而得到结论.
解答:解:∵λ1
+λ2
+λ3
=
,
∴λ1
+λ2
=-λ3
,两边同时点乘
,得
λ1
•
+λ2![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/24.png)
=-λ3![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/26.png)
,
即λ1|
|•|
|cos∠COA+λ2
cos∠BOC=-λ3![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/31.png)
<0,,
∴∠BOC、∠COA至少有一个为钝角,
同理∠AOB、∠BOC至少有一个为钝角,∠AOB、∠COA至少有一个为钝角,
因此∠AOB、∠BOC、∠COA至少有两个钝角.
故选D.
点评:此题是个中档题.考查数量积表示两个向量的夹角,以及数量积的定义式,同时考查学生灵活应用知识分析解决问题的能力和计算能力.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/13.png)
解答:解:∵λ1
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/17.png)
∴λ1
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/21.png)
λ1
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/27.png)
即λ1|
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182234596780261/SYS201310241822345967802007_DA/32.png)
∴∠BOC、∠COA至少有一个为钝角,
同理∠AOB、∠BOC至少有一个为钝角,∠AOB、∠COA至少有一个为钝角,
因此∠AOB、∠BOC、∠COA至少有两个钝角.
故选D.
点评:此题是个中档题.考查数量积表示两个向量的夹角,以及数量积的定义式,同时考查学生灵活应用知识分析解决问题的能力和计算能力.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
已知O、A、B、C是不共线的四点,若存在一组正实数λ1﹑λ2﹑λ3,使λ1
+λ2
+λ3
=
,则三个角∠AOB、∠BOC、∠COA( )
OA |
OB |
OC |
0 |
A、都是锐角 |
B、至多有两个钝角 |
C、恰有两个钝角 |
D、至少有两个钝角 |