题目内容
【题目】2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
车流量x(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的浓度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是 = x+ ,其中 = , = ﹣ .
【答案】解:(Ⅰ)由数据可得: , ,
, ,
,
故y关于x的线性回归方程为 .
(Ⅱ)(ⅰ)当车流量为8万辆时,即x=8时, .
故车流量为8万辆时,PM2.5的浓度为67微克/立方米.
(ⅱ)根据题意信息得:6x+19≤100,即x≤13.5,
故要使该市某日空气质量为优或为良,则应控制当天车流量在13万辆以内
【解析】(Ⅰ)根据公式求出回归系数,可写出线性回归方程;(Ⅱ)(ⅰ)根据(Ⅰ)的性回归方程,代入x=8求出PM2.5的浓度;(ⅱ)根据题意信息得:6x+19≤100,即x≤13.5,解得x的取值范围即可.
练习册系列答案
相关题目