题目内容

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

一次购物量

1至4件

5至8件

9至12件

13至16件

17件及以上

顾客数(人)

x

30

25

y

10

结算时间(分钟/人)

1

1.5

2

2.5

3

已知这100位顾客中一次购物量超过8件的顾客占55%.

(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;

(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.

(注:将频率视为概率)

 

【答案】

(Ⅰ)x=15,y=20.

X

1

1.5

2

2.5

3

P

E(X)=1.9;(Ⅱ)

【解析】

试题分析:(Ⅰ)根据总人数有100人,则,由100位顾客中一次购物量超过8件的顾客占55%,则知.根据这两式得x=15,y=20,由表格可得X的可以取值为:1,1.5,2,2.5,3;该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率,即可得到分布列与期望.

(Ⅱ)由于该客到达收银台时前面恰有2位顾客需结算,则该顾客结算前的等候时间不超过2.5分钟的情况为(1、1),(1、1.5),(1.5、1)三种情况,则按照各顾客的结算相互独立,有

P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)

×××

试题解析:(Ⅰ)由已知,得25+y+10=55,x+30=45,所以x=15,y=20.

该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得

P(X=1)=,P(X=1.5)=,P(X=2)=

P(X=2.5)=,P(X=3)=

X的分布列为

X

1

1.5

2

2.5

3

P

X的数学期望为

E(X)=1×+1.5×+2×+2.5×+3×=1.9.

(Ⅱ)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,Xi(i=1,2)为该顾客前面第i位顾客的结算时间,则

P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).

由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以

P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)

×××

故该顾客结算前的等候时间不超过2.5分钟的概率为

考点:1.离散型随机变量的分布列与数学期望;2.以及相互独立事件的概率的求法.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网