ÌâÄ¿ÄÚÈÝ
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
Èô¾ØÕóAÓÐÌØÕ÷Öµ¦Ë1=2£¬¦Ë2=-1£¬ËüÃÇËù¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿·Ö±ðΪe1=
ºÍe2=
£®
£¨I£©Çó¾ØÕóA£»
£¨II£©ÇóÇúÏßx2+y2=1ÔÚ¾ØÕóAµÄ±ä»»Ïµõ½µÄÐÂÇúÏß·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ
(¦ÈΪ²ÎÊý£©£¬C2µÄ²ÎÊý·½³ÌΪ
(tΪ²ÎÊý£©
£¨I£©Èô½«ÇúÏßC1ÓëC2ÉÏËùÓеãµÄºá×ø±ê¶¼Ëõ¶ÌΪÔÀ´µÄÒ»°ë£¨×Ý×ø±ê²»±ä£©£¬·Ö±ðµÃµ½ÇúÏßC¡ä1ºÍC¡ä2£¬Çó³öÇúÏßC¡ä1ºÍC¡ä2µÄÆÕͨ·½³Ì£»
£¨II£©ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Çó¹ý¼«µãÇÒÓëC¡ä2´¹Ö±µÄÖ±Ïߵļ«×ø±ê·½³Ì£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
É躯Êýf£¨x£©=|2x-1|+|2x-3|£¬x¡ÊR£¬
£¨I£©Çó¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ü5µÄ½â¼¯£»
£¨II£©Èôg(x)=
µÄ¶¨ÒåÓòΪR£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
Èô¾ØÕóAÓÐÌØÕ÷Öµ¦Ë1=2£¬¦Ë2=-1£¬ËüÃÇËù¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿·Ö±ðΪe1=
|
|
£¨I£©Çó¾ØÕóA£»
£¨II£©ÇóÇúÏßx2+y2=1ÔÚ¾ØÕóAµÄ±ä»»Ïµõ½µÄÐÂÇúÏß·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ
|
|
£¨I£©Èô½«ÇúÏßC1ÓëC2ÉÏËùÓеãµÄºá×ø±ê¶¼Ëõ¶ÌΪÔÀ´µÄÒ»°ë£¨×Ý×ø±ê²»±ä£©£¬·Ö±ðµÃµ½ÇúÏßC¡ä1ºÍC¡ä2£¬Çó³öÇúÏßC¡ä1ºÍC¡ä2µÄÆÕͨ·½³Ì£»
£¨II£©ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Çó¹ý¼«µãÇÒÓëC¡ä2´¹Ö±µÄÖ±Ïߵļ«×ø±ê·½³Ì£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
É躯Êýf£¨x£©=|2x-1|+|2x-3|£¬x¡ÊR£¬
£¨I£©Çó¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ü5µÄ½â¼¯£»
£¨II£©Èôg(x)=
1 |
f(x)+m |
£¨1£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
£¨I£©ÉèA=£¨
£©£¬ÓÉA
=¦Ë1
£¬A
=¦Ë2
µÃ£º
=2
=
£¬
=-1¡Á
=
£¬
¡à
£¬¹ÊA=
¡4·Ö
£¨II£©ÉèÇúÏßx2+y2=1ÉÏÈÎÒâÒ»µã£¨x£¬y£©ÔÚ¾ØÕóA¶ÔÓ¦µÄ±ä»»Ïµõ½µÄµãΪ£¨x¡ä£¬y¡ä£©£¬Ôò
=
£¬¼´
£¬
¡à
£¬´Ó¶ø(
x¡ä)2+£¨-y¡ä£©2=1£¬¼´
+y¡ä2=1£¬
¡àÐÂÇúÏß·½³ÌΪ
+y2=1¡7·Ö
£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
¡ß£¨¢ñ£©C1£º
(¦ÈΪ²ÎÊý£©£¬C2£º
(tΪ²ÎÊý£¬
¡àC1µÄÆÕͨ·½³ÌΪx2+y2=1£¬C2µÄÆÕͨ·½³ÌΪy=x-1¡4·Ö
£¨¢ò£©ÔÚÖ±½Ç×ø±êϵÖйý¼«µã¼´Îª¹ýÔµãÓëÇúÏßC2´¹Ö±µÄÖ±Ïß·½³ÌΪy=-x£¬
ÔÚ¼«×ø±êϵÖУ¬Ö±Ïß»¯Îªtan¦È=1£¬·½³ÌΪ¦È=
»ò¦È=
¡7·Ö
£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
£¨¢ñ£©
»ò
»ò
£¬
¡à²»µÈʽµÄ½â¼¯Îªx¡Ê[-
£¬
]¡4·Ö
£¨¢ò£©Èôg£¨x£©=
µÄ¶¨ÒåÓòΪR£¬Ôòf£¨x£©+m¡Ù0ºã³ÉÁ¢£¬¼´f£¨x£©+m=0ÔÚRÉÏÎ޽⣬
ÓÖf£¨x£©=|2x-1|+|2x-3|¡Ý|2x-1-2x+3|=2£¬
¡àf£¨x£©µÄ×îСֵΪ2£¬
¡àm£¼-2¡7·Ö£®
£¨I£©ÉèA=£¨
|
i |
i |
j |
j |
|
|
|
|
|
|
|
|
¡à
|
|
£¨II£©ÉèÇúÏßx2+y2=1ÉÏÈÎÒâÒ»µã£¨x£¬y£©ÔÚ¾ØÕóA¶ÔÓ¦µÄ±ä»»Ïµõ½µÄµãΪ£¨x¡ä£¬y¡ä£©£¬Ôò
|
|
|
|
¡à
|
1 |
2 |
x¡ä2 |
4 |
¡àÐÂÇúÏß·½³ÌΪ
x2 |
4 |
£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
¡ß£¨¢ñ£©C1£º
|
|
¡àC1µÄÆÕͨ·½³ÌΪx2+y2=1£¬C2µÄÆÕͨ·½³ÌΪy=x-1¡4·Ö
£¨¢ò£©ÔÚÖ±½Ç×ø±êϵÖйý¼«µã¼´Îª¹ýÔµãÓëÇúÏßC2´¹Ö±µÄÖ±Ïß·½³ÌΪy=-x£¬
ÔÚ¼«×ø±êϵÖУ¬Ö±Ïß»¯Îªtan¦È=1£¬·½³ÌΪ¦È=
¦Ð |
4 |
3¦Ð |
4 |
£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
£¨¢ñ£©
|
|
|
¡à²»µÈʽµÄ½â¼¯Îªx¡Ê[-
1 |
4 |
9 |
4 |
£¨¢ò£©Èôg£¨x£©=
1 |
f(x)+m |
ÓÖf£¨x£©=|2x-1|+|2x-3|¡Ý|2x-1-2x+3|=2£¬
¡àf£¨x£©µÄ×îСֵΪ2£¬
¡àm£¼-2¡7·Ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿