题目内容
已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_ST/0.png)
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理科做,文科不做)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.(参考数据:210=1024)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_ST/images1.png)
【答案】分析:(1)an=p+(n-1)d,直角梯形AnAn+1Bn+1Bn的两底长度AnBn=f(an),An+1Bn+1=f(an+1).高为AnAn+1 =d,利用梯形面积公式表示出sn.利用等比数列定义进行证明即可.
(2)an=-1+(n-1)=n-2,bn=(
)n-2,以bn,bn+1,bn+2为边长能构成一个三角形,则bn+2+bn+1>bn考查次不等式解的情况作解答.
(4)利用无穷等比数列求和公式,将S>2010 化简为 S=
>2010,探讨p的存在性.
解答:解:(1)由等差数列通项公式可得an=p+(n-1)d,
…(2分)
,
对于任意自然数n,
=
,
所以数列{sn}是等比数列且公比
,因为d>0,所以|q|<1.…(5分)
(写成
,得公比
也可)
(2)an=p+(n-1)=n+p-1,
,对每个正整数n,bn>bn+1>bn+2
若以bn,bn+1,bn+2为边长能构成一个三角形,则bn+2+bn+1>bn,
即
,令n=-1,得1+2>4,这是不可能的.
所以对每一个正整数n,以bn,bn+1,bn+2为边长不能构成三角形.…(10分)
(3)(理科做,文科不做)
,
所以
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/14.png)
如果存在p使得
,即![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/16.png)
两边取对数得:p<-log21340,
因此符合条件的p值存在,log21340≈10.4,可取p=-11等.…(14分)
说明:通过具体的p值,验证
也可.
点评:本题是函数与数列、不等式的结合.考查等比数列的判定,含参数不等式解的讨论.考查分析解决问题,计算,逻辑思维等能力
(2)an=-1+(n-1)=n-2,bn=(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/0.png)
(4)利用无穷等比数列求和公式,将S>2010 化简为 S=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/1.png)
解答:解:(1)由等差数列通项公式可得an=p+(n-1)d,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/3.png)
对于任意自然数n,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/5.png)
所以数列{sn}是等比数列且公比
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/6.png)
(写成
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/8.png)
(2)an=p+(n-1)=n+p-1,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/9.png)
若以bn,bn+1,bn+2为边长能构成一个三角形,则bn+2+bn+1>bn,
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/10.png)
所以对每一个正整数n,以bn,bn+1,bn+2为边长不能构成三角形.…(10分)
(3)(理科做,文科不做)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/14.png)
如果存在p使得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/16.png)
两边取对数得:p<-log21340,
因此符合条件的p值存在,log21340≈10.4,可取p=-11等.…(14分)
说明:通过具体的p值,验证
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125843018412820/SYS201310251258430184128025_DA/17.png)
点评:本题是函数与数列、不等式的结合.考查等比数列的判定,含参数不等式解的讨论.考查分析解决问题,计算,逻辑思维等能力
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目