题目内容

抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.
(1)求证:直线与抛物线总有两个交点;
(2)设直线与抛物线的交点为Q、R,OQ⊥OR,
求p关于m的函数f(m)的表达式;
(3)在(2)的条件下,若抛物线焦点F到直线x+y=m的距离为数学公式
求此直线的方程.

解:(1)抛物线y2=p(x+1)的准线方程是x=-1-
直线x+y=m与x轴的交点为(m,0),
题设交点在准线右边,
得m>-1-,即4m+p+4>0.

得x2-(2m+p)x+(m2-p)=0.
而判别式△=(2m+p)2-4(m2-p)=p(4m+p+4).
又p>0及4m+p+4>0,
可知△>0.
因此,直线与抛物线总有两个交点; …(4分)
(2)设Q、R两点的坐标分别为(x1,y1)、(x2,y2),
由(1)知,x1、x2是方程x2-(2m+p)x+m2-p=0的两根,
∴x1+x2=2m+p,x1•x2=m2-p.
由OQ⊥OR,得kOQ•kOR=-1,
即有x1x2+y1y2=0.
又Q、R为直线x+y=m上的点,
因而y1=-x1+m,y2=-x2+m.
于是x1x2+y1y2=2x1x2-m(x1+x2)+m2=2(m2-p)-m(2m+p)+m2=0,
∴p=f(m)=

得m>-2,m≠0;…(9分)
(3)由于抛物线y2=p(x+1)的焦点F坐标为(-1+,0),
于是有
即|p-4m-4|=4.
又p=
∴||=4.
解得m1=0,m2=-,m3=-4,m4=-
但m≠0且m>-2,因而舍去m1、m2、m3
故所求直线方程为3x+3y+4=0.…(14分)
分析:(1)抛物线y2=p(x+1)的准线方程是x=-1-,直线x+y=m与x轴的交点为(m,0),由题设交点在准线右边,得4m+p+4>0.由,得x2-(2m+p)x+(m2-p)=0.由此得到直线与抛物线总有两个交点.
(2)设Q、R两点的坐标分别为(x1,y1)、(x2,y2),由(1)知,x1、x2是方程x2-(2m+p)x+m2-p=0的两根,所以x1+x2=2m+p,x1•x2=m2-p.由OQ⊥OR,得kOQ•kOR=-1,因而y1=-x1+m,y2=-x2+m.由此能求出函数f(m)的表达式.
(3)由于抛物线y2=p(x+1)的焦点F坐标为(-1+,0),得|p-4m-4|=4.由p=,知||=4.由此能够推导出所求的直线方程.
点评:本题主要考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网