题目内容
【题目】若关于x的不等式ex﹣(a+1)x﹣b≥0(e为自然对数的底数)在R上恒成立,则(a+1)b的最大值为( )
A.e+1
B.e+
C.
D.
【答案】C
【解析】解:不等式ex﹣(a+1)x﹣b≥0(e为自然对数的底数)在R上恒成立,令f(x)=ex﹣(a+1)x﹣b,则f(x)≥0在R上恒成立.只需要f(x)min≥0即可.
f′(x)=ex﹣(a+1)
令f′(x)=0,
解得x=ln(a+1),(a>﹣1)
当x∈(﹣∞,ln(a+1))时,f′(x)<0,则f(x)时单调递减.
当x∈(ln(a+1),+∞)时,f′(x)>0,则f(x)时单调递增.
故x=ln(a+1)时,f(x)取得最小值
即(a+1)﹣(a+1)ln(a+1)≥b
那么:(a+1)2[1﹣ln(a+1)]≥b(a+1)
令(a+1)=t,(t>0)
则现求g(t)=t2﹣t2lnt的最大值.
g′(t)=
令g′(t)=0,解得:t=
得极大值为g( )=
∴(a+1)b的最大值为 .
故选C.
练习册系列答案
相关题目