题目内容

(2013•济南二模)已知四边形ABCD是菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,G、H分别是CE、CF的中点.
(1)求证:平面AEF∥平面BDGH
(2)若平面BDGH与平面ABCD所成的角为60°,求直线CF与平面BDGH所成的角的正弦值.
分析:(1)平面AEF内两条相交直线EF与OG分别平行平面BDGH内的两条相交直线GH与OG,利用平面与平面平行的判定定理证明即可.
(2)取EF的中点N,建立空间直角坐标系,设AB=2,BF=t,求出B、C、F、H坐标,求出平面BDGH的一个法向量,平面ABCD的法向量,利用向量的数量积,结合二面角的大小,求出t,然后求出直线CF与平面BDGH所成的角的正弦值.
解答:解:(1)G、H分别是CE、CF的中点
所以EF∥GH--------①--------(1分)
连接AC与BD交与O,因为四边形ABCD是菱形,所以O是AC的中点
连OG,OG是三角形ACE的中位线OG∥AE---------②-------3 分
由①②知,平面AEF∥平面BDGH--------------(4分)
(2)BF⊥BD,平面BDEF⊥平面ABCD,所以BF⊥平面ABCD---------(5分)
取EF的中点N,ON∥BF∴ON⊥平面ABCD,
建系{
OB
OC
ON
}

设AB=2,BF=t,
B(1,0,0),C(0,
3
,0),F(1,0,t)
H(
1
2
3
2
t
2
)
---------------(6分)
OB
=(1,0,0),
OH
=(
1
2
3
2
t
2
)

设平面BDGH的法向量为
n1
=(x,y,z)
n1
OB
=x=0
n1
OH
=
1
2
x+
3
2
y+
t
2
z=0

所以
n1
=(0,-t,
3
)

平面ABCD的法向量
n2
=(0,0,1)
---------------------------(9分)
|cos<
n1
n2
>|=
3
3+t2
=
1
2
,所以t2=9,t=3---------------(10分)
所以
CF
=(1,-
3
,3)

设直线CF与平面BDGH所成的角为θ,
sinθ=|cos?
CF
n1
>|=
6
3
13
×2
3
=
3
13
13
-----------------(12分)
点评:本题考查空间向量求解二面角以及直线与平面所成角的求法,平面与平面平行的判定定理的应用,考查空间想象能力,逻辑推理能力以及计算能力的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网