题目内容

(2013•济南二模)若椭圆C1
x2
a12
+
y2
b12
=1
(a1>b1>0)和椭圆C2
x2
a22
+
y2
b22
=1
(a2>b2>0)的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;
a1
a2
b1
b2

③a12-a22=b12-b22
④a1-a2<b1-b2
其中,所有正确结论的序号是(  )
分析:利用两椭圆有相同焦点,可知a12-a22=b12-b22,由此可判断①③正确;利用a1>b1>0,a2>b2>0可判断④正确
解答:解:由题意,a12-b12=a22-b22,∵a1>a2,∴b1>b2,∴①③正确;
又a12-a22=b12-b22,a1>b1>0,a2>b2>0,∴④正确,
故选B.
点评:本题主要考查椭圆的几何性质,等价转化是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网