题目内容

2、已知函数y=2x3+ax2+36x-24在x=2处有极值,则该函数的一个递增区间是(  )
分析:先求出函数的导数,再根据极值求出参数a的值,然后在函数的定义域内解不等式fˊ(x)>0的区间即可.
解答:解:y′=f′(x)=6x2+2ax+36
∵在x=2处有极值
∴f′(2)=60+4a=0,解得a=-15
令f′(x)=6x2-30x+36>0
解得x<2或x>3
故选B
点评:本题主要考查了利用导数研究函数的极值,以及利用导数研究函数的单调性,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网