题目内容
已知命题P:实数m满足m-1≤0,命题q:函数y=(9-4m)x是增函数.若p∨q为真命题,p∧q为假命题,则实数m的取值范围为( )
分析:先求出命题P、命题q为真命题的m的范围,再根据复合命题真值表分析求解.
解答:解:命题P为真命题:m-1≤0⇒m≤1;
命题q为真命题:函数y=(9-4m)x是增函数,∴9-4m>1⇒m<2.
∵p∨q为真命题,p∧q为假命题,根据复合命题真值表,命题P、q一真一假,

∴1<m<2
故选A
命题q为真命题:函数y=(9-4m)x是增函数,∴9-4m>1⇒m<2.
∵p∨q为真命题,p∧q为假命题,根据复合命题真值表,命题P、q一真一假,

∴1<m<2
故选A
点评:本题考查复合命题的真假判断,根据复合命题的真值表判断.

练习册系列答案
相关题目