题目内容
【题目】已知函数.
(1)讨论函数的单调性;
(2)若函数的图像与轴相切,求证:对于任意互不相等的正实数,,都有.
【答案】(1)见解析;(2)见证明
【解析】
(1)先对函数求导,分别讨论和,即可得出结果;
(2)结合(1)的结果,得到时,在上单调递增,不满足条件;当时,得到的极大值,再由函数的图像与轴相切,求出,将原问题转为证明即可,再构造函数,用导数的方法判断其单调性,结合条件,即可得出结论成立.
(1)函数的定义域为 ,.
当时, ,在上单调递增;
当时,由,得 .
若 ,,单调递增;
若 ,,单调递减
综合上述:当时,在上单调递增;
当时,在单调递增,在上单调递减.
(2)由(Ⅰ)知,当时,在上单调递增,不满足条件;
当时,的极大值为,
由已知得 ,故 ,此时.
不妨设,则
等价于 ,即证:
令 , 则
故在单调递减,所以.
所以对于任意互不相等的正实数,都有 成立.
练习册系列答案
相关题目
【题目】某销售公司在当地、两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了、两家超市往年同期各50天的该食品销售记录,得到如下数据:
销售件数 | 8 | 9 | 10 | 11 |
频数 | 20 | 40 | 20 | 20 |
以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.
(1)求的分布列;
(2)以销售食品利润的期望为决策依据,在与之中选其一,应选哪个?