题目内容
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:
经检验,这组样本数据具有线性相关关系,那么对于加工零件的个数x与加工时间y这两个变量,下列判断正确的是( )
加工零件x(个) | 10 | 20 | 30 | 40 | 50 |
加工时间y(分钟) | 64 | 69 | 75 | 82 | 90 |
A、成正相关,其回归直线经过点(30,75) |
B、成正相关,其回归直线经过点(30,76) |
C、成负相关,其回归直线经过点(30,76) |
D、成负相关,其回归直线经过点(30,75) |
分析:根据表中所给的数据,得到两变量为正相关,求出横标和纵标的平均数,得到样本中心点,进而得到结论.
解答:解:由表格数据知,加工时间随加工零件的个数的增加而增加,故两变量为正相关,
又由
=
(10+20+30+40+50)=30,
=
(64+69+75+82+90)=76,
故回归直线过样本中心点(30,76),
故选:B.
又由
. |
x |
1 |
5 |
. |
y |
1 |
5 |
故回归直线过样本中心点(30,76),
故选:B.
点评:本题考查线性相关及回归方程的应用,解题的关键是得到样本中心点,为基础题.
练习册系列答案
相关题目
某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:
(1)求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少时间?注:b=
,a=
-b
.
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(2)试预测加工10个零件需要多少时间?注:b=
| |||||||
|
. |
y |
. |
x |
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
|
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程
=
x+
,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
(注:
=
,
=
-
)
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(2)求出y关于x的线性回归方程
y |
b |
a |
(3)试预测加工10个零件需要多少时间?
(注:
b |
| |||||||
|
a |
. |
y |
b |
. |
x |