题目内容

如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则必有(   )

A.S1<S2           B. S1>S2

C. S1=S2            D. S1,S2的大小关系不能确定

C


解析:

连OA、OB、OC、OD,则VABEFD=VOABD+VOABE+VOBEFDVAEFC=VOADC+VOAEC+VOEFC又VABEFD=VAEFC而每个三棱锥的高都是原四面体的内切球的半径,故SABD+SABE+SBEFD=SADC+SAEC+SEFC又面AEF公共,故选C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网