题目内容
已知点A(1,2)在椭圆![](http://thumb.zyjl.cn/pic1/1898/img/06/53/21/189806532110001721/2.gif)
解:∵a2=16,b2=12,∴c2=4,c=2.
∴F为椭圆的右焦点,并且离心率为=
.
设P到右准线的距离为d,则|PF|=d, d=2|PF|.
∴|PA|+2|PF|=|PA|+d.
由几何性质可知,当P点的纵坐标(横坐标大于零)与A点的纵坐标相同时,|PA|+d最小.
把y=2代入=1,得x=
(负舍),即P(
,2)为所求.
点评:由得d=2|PF|是求P点的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目