题目内容
【题目】如图,正方形的边长为1,E,F分别是,的中点,交EF于点D,现沿SE,SF及EF把这个正方形折成一个四面体,使,,三点重合,重合后的点记为G,则在四面体中必有( )
A.平面EFG
B.设线段SF的中点为H,则平面SGE
C.四面体的体积为
D.四面体的外接球的表面积为
【答案】ABD
【解析】
对选项折成四面体后,,,由此能证明平面;对选项,证明SE,即得证;对选项,求出四面体的体积为,即得解;对选项,求出三棱锥的外接球的半径为,即得解.
对选项,在折前正方形中,,,
折成四面体后,,,
又, 平面,平面.
所以选项正确.
对选项,
对选项,连接因为,,
所以,
因为平面,平面,
所以平面SGE.
所以选项正确.
对选项,
前面已经证明平面,
所以是三棱锥的高,且.
由题得,,
所以.
所以,
所以四面体的体积为.
所以选项错误.
对选项,由于,
所以可以把三棱锥放到长方体模型之中,长方体的三条棱为,
所以三棱锥的外接球的直径.
所以选项正确.
故选:ABD.
【题目】中国女排,曾经十度成为世界冠军,铸就了响彻中华的女排精神.女排精神的具体表现为:扎扎实实,勤学苦练,无所畏惧,顽强拼搏,同甘共苦,团结战斗,刻苦钻研,勇攀高峰.女排精神对各行各业的劳动者起到了激励、感召和促进作用,给予全国人民巨大的鼓舞.
(1)看过中国女排的纪录片后,某大学掀起“学习女排精神,塑造健康体魄”的年度主题活动,一段时间后,学生的身体素质明显提高,将该大学近5个月体重超重的人数进行统计,得到如下表格:
月份x | 1 | 2 | 3 | 4 | 5 |
体重超重的人数y | 640 | 540 | 420 | 300 | 200 |
若该大学体重超重人数y与月份变量x(月份变量x依次为1,2,3,4,5…)具有线性相关关系,请预测从第几月份开始该大学体重超重的人数降至10人以下?
(2)在某次排球训练课上,球恰由A队员控制,此后排球仅在A队员、B队员和C队员三人中传递,已知每当球由A队员控制时,传给B队员的概率为,传给C队员的概率为;每当球由B队员控制时,传给A队员的概率为,传给C队员的概率为;每当球由C队员控制时,传给A队员的概率为,传给B队员的概率为.记,,为经过n次传球后球分别恰由A队员、B队员、C队员控制的概率.
(i)若,B队员控制球的次数为X,求;
(ii)若,,,,,证明:为等比数列,并判断经过200次传球后A队员控制球的概率与的大小.
附1:回归方程中斜率和截距的最小二乘估计公式分别为:;.
附2:参考数据:,.