题目内容

如果e1e2是平面内所有向量的一组基底,那么(    )

A.若实数m、n使得me1+ne2=0,则m=n=0

B.空间任一向量a可以表示为a1e12e2,其中λ1、λ2为实数

C.对于实数m、n,me1+ne2不一定在此平面上

D.对于平面内的某一向量a,存在两对以上的实数m、n,使a=me1+ne2

解析:对于选项B,应为平面内任一向量,故B错.

对于C,me1+ne2一定在此平面上,故C错.

对于D,由平面向量基本定理,知m、n是唯一的,故D错.

答案:A

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网