题目内容

二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围.
【答案】分析:(1)由二次函数f(x)的最小值为1,且f(0)=f(2)=3,可求得其对称轴为x=1,可设f(x)=a(x-1)2+1 (a>0),由f(0)=3,可求得a,从而可得f(x)的解析式;
(2)由f(x)的对称轴x=1穿过区间(2a,a+1)可列关系式求得a的取值范围.
解答:解:(1)∵f(x)为二次函数且f(0)=f(2),
∴对称轴为x=1.
又∵f(x)最小值为1,
∴可设f(x)=a(x-1)2+1,(a>0)
∵f(0)=3,
∴a=2,
∴f(x)=2(x-1)2+1,即f(x)=2x2-4x+3.
(2)由条件知f(x)的对称轴x=1穿过区间(2a,a+1)
∴2a<1<a+1,
∴0<a<
点评:本题考查二次函数的性质,着重考查二次函数的图象与性质,考查待定系数法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网