题目内容

 

如图,已知P为矩形ABCD所在平面外一点,PA平面ABCD,E、F分别是AB、PC的中点.

   (Ⅰ)求证:EF∥平面PAD;

   (Ⅱ)求证:EFCD;

   (Ⅲ)若,∠PDA=45°,求EF与平面ABCD所成角的大小.

                                                                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 证明:如图,建立空间直角坐标系A-xyz,设AB=2a,BC=2b,PA=2c,

则A(0,0,0),B(2a,0,0),C(2a,2b,0),D(0,2b,0),P(0,0,2c).

∵E为AB的中点,F为PC的中点,

∴E(a,0,0),F(a,b,c).

(Ⅰ)∵=(0,b,c),=(0,0,2c),

=(0,2b,0),

).

共面.

又∴平面PAD,

∴EF∥平面PAD.……………………4分

(Ⅱ)∵=(-2a,0,0),

·=(-2 a,0,0)·(0,b,c)=0.

∴EFCD.…………………………………………………………8分

(Ⅲ)若∠PDA=45°则有2b=2c,即b=c.

=(0,b,b),=(0,0,2b).

>=

∴<>=45°.

∵AP平面ABCD,

是平面ABCD的法向量.

∴EF与平面ABCD所成的角为90°-<>=45°.……12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网