题目内容
若实数x,y满足不等式组
且x+y的最大值为9,则实数m=( )
|
A、-2 | B、-1 | C、1 | D、2 |
分析:先根据约束条件画出可行域,设z=x+y,再利用z的几何意义求最值,只需求出直线x+y=9过可行域内的点A时,从而得到m值即可.
解答:解:先根据约束条件画出可行域,
设z=x+y,
将最大值转化为y轴上的截距,
当直线z=x+y经过直线x+y=9与直线2x-y-3=0的交点A(4,5)时,z最大,
将m等价为斜率的倒数,
数形结合,将点A的坐标代入x-my+1=0得
m=1,
故选C.
设z=x+y,
将最大值转化为y轴上的截距,
当直线z=x+y经过直线x+y=9与直线2x-y-3=0的交点A(4,5)时,z最大,
将m等价为斜率的倒数,
数形结合,将点A的坐标代入x-my+1=0得
m=1,
故选C.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
练习册系列答案
相关题目