题目内容

已知圆C1x2+y2-2x-4y+4=0与直线l:x+2y-4=0相交于A,B两点.
(Ⅰ)求弦AB的长;
(Ⅱ)若圆C2经过E(1,-3),F(0,4),且圆C2与圆C1的公共弦平行于直线2x+y+1=0,求圆C2的方程.
分析:(Ⅰ)求出圆心到直线l的距离,再利用勾股定理即可求出弦AB的长;
(II)设圆C2的方程为x2+y2+Dx+Ey+F=0,与圆C1x2+y2-2x-4y+4=0方程相减,可得公共弦所在的直线方程为:(D+2)x+(E+2)y+F=0,利用圆C2与圆C1的公共弦平行于直线2x+y+1=0,可得D=2E+6,再根据圆C2经过E(1,-3),F(0,4),可构建方程组,从而可求圆C2的方程.
解答:解:(Ⅰ)圆心到直线l的距离 d=
5
5
,(2分)
所以|AB|=2
1-
1
5
=
4
5
5
.                     (4分)
(II)设圆C2的方程为x2+y2+Dx+Ey+F=0,
∵圆C1x2+y2-2x-4y+4=0
∴两方程相减,可得公共弦所在的直线方程为:(D+2)x+(E+4)y+F-4=0,
∵圆C2与圆C1的公共弦平行于直线2x+y+1=0,
D+2
2
=
E+4
1
,即D=2E+6.                        (6分)
又因为圆C2经过E(1,-3),F(0,4),
所以
1+9+D-3E+F=0
16+4E+F=0
D=2E+6
D=6
E=0
F=-16.

所以圆C2的方程为x2+y2+6x-16=0.(8分)
点评:本题考查圆中的弦长问题,考查两圆的公共弦,考查圆的方程,解题的关键是利用圆的特征,确定公共弦的方程.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网