题目内容

11.如图所示,E是正方形ABCD所在平面外一点,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°.则以下结论中正确的有(1)(2)(4).
(1)CD⊥面GEF.
(2)AG=1.
(3)以AC,AE作为邻边的平行四边形面积是8.
(4)∠EAD=60°.

分析 由已知推导出FG⊥AB,CD⊥GF,EF⊥CD从而得到CD⊥平面GEF;由已知得AB=AE=BE=BC=AC=2,AF=BF=CF,从而得到AG=BG=1,以AC,AE作为邻边的平行四边形面积是4,∠EAD=∠EAB=60°.

解答 解:在(1)中,∵E是正方形ABCD所在平面外一点,FG∥BC,
∴BC⊥AB,∴FG⊥AB,∵AB∥CD,∴CD⊥GF,
∵E在面ABCD上的正投影F恰在AC上,∴EF⊥平面ABCD,
∴EF⊥CD,∵EF∩GF=F,∴CD⊥平面GEF,故(1)正确;
在(2)中,∵AB=AE=2,∠EAB=60°,∴AB=AE=BE=BC=AC=2,
∴AF=BF=CF,∵FG∥BC,∴AG=BG=1,故(2)正确;
在(3)中,∵由(2)得AF=CF=EF=$\sqrt{2}$,
∴${S}_{△EAC}=\frac{1}{2}×2\sqrt{2}×\sqrt{2}$=2,
∴以AC,AE作为邻边的平行四边形面积是4,故(3)错误;
在(4)中,由(2)得∠EAD=∠EAB=60°,故(4)正确.
故答案为:(1)(2)(4).

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网