题目内容
(选修4-1:几何证明选讲)
如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,∠ABC=60°,PD=1,BD=8,求线段BC的长.
如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,∠ABC=60°,PD=1,BD=8,求线段BC的长.
分析:利用弦切角定理即可得出∠PAE=60°,进而得出△PAE是等边三角形.再利用切割线定理和相交弦定理即可得出.
解答:解:∵PA是⊙O的切线,∴PA2=PD•PB,
∵PD=1,BD=8,∴PA2=1×9,解得PD=3.
∵∠ABC=60°,∴∠PAE=60°.
又∵PE=PA,∴△PAE是等边三角形.
∴AE=3,ED=PE-PD=2.
由相交弦定理可得:BE•ED=AE•EC,∴6×2=3×EC,解得EC=4.
在△BEC中,由余弦定理可得BC2=62+42-2×6×4cos60°=28.
∴BC=2
.
∵PD=1,BD=8,∴PA2=1×9,解得PD=3.
∵∠ABC=60°,∴∠PAE=60°.
又∵PE=PA,∴△PAE是等边三角形.
∴AE=3,ED=PE-PD=2.
由相交弦定理可得:BE•ED=AE•EC,∴6×2=3×EC,解得EC=4.
在△BEC中,由余弦定理可得BC2=62+42-2×6×4cos60°=28.
∴BC=2
7 |
点评:熟练掌握弦切角定理、等边三角形的判定、切割线定理和相交弦定理是解题的关键..
练习册系列答案
相关题目